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Abstract: Shell model calculations with BCS theory were performed to study the first exited states and the reduced 

transition probabilities );( gsi JJMB   for the A= 78 chain of isobars by employing the MSDI as a residual 

interaction between two quasiparticles, in the pure configurations and the configuration mixing for all allowed 

states on the full valence space 2/9001 gfـpـ . The core is taken at Ca40

20  for all nuclei under study and the results 

of our theoretical calculations are compared with the most recent available experimental data. It was found that 

the shell model using BCS theory and MSDI is still one of the most suitable models to carry out, such as 

calculations, and taking configuration mixing into consideration, enhances considerably, the results, more than the 

case of pure configurations when comparison with experimental data, and we found success for MSDI as a residual 

interaction even when the valance nucleons is large. 

Keywords: configuration mixing, modified shell model, quasiparticle, transition probability, occupation amplitude.  

1. INTRODUCTION 

The nuclear shell model has been very successful in our understanding of nuclear structure once a suitable effective 

interaction is found, the shell model can predict various observables accurately and systematically. For light nuclei, there 

are several standard effective interactions, such as the Cohen-Kurath and the USD interactions for p and sd shells, 

respectively. On the other hand, in the 2/9001 gfـpـ space, there are, also, standard interactions, such as FPD6, 

GXPF1[1] and Modified Surface Delta Interaction (MSDI)[2]. Shell model calculations have been performed recently 

with the MSDI as an effective two-body interaction for many nuclei[2]. During the last three decades, the shell model 

configuration mixing calculations have yielded extremely valuable contributions to the microscopic understanding of 

many nuclear structure properties. However, it is well known that the configuration mixing approach is restricted to rather 

small valance spaces or comparable basis systems due to the very large dimensions of the matrices that need to be 

diagonalized. Recent technological innovations have extended the shell model calculations up to A~60 region, where the 

energy spectra and other properties of nuclei can be studied by exact diagonalizations in a full major oscillator shell. 

Because of the much larger configuration space required, the heavier nuclei cannot be studied by using this procedure yet. 

Even if it may technically be attainable on a modern supercomputer, such a calculation is not of much interest from a 

physical point of view, because it is very difficult to guarantee that the data obtained in this way are able to uncover the 

physics hidden behind a vast amount of computer output[3]. In order to overcome the above mentioned, many approaches 

have been developed and extensively applied to investigate the structure of various nuclei. Such as the BCS(Bardeen, 

Cooper, Schrieffer) theory[4], using this theory to treat the problems of the nuclear pairing correlation is considered to be 

suitable for a system containing a large number of particles. This method have achieved great success in describing the 

energy spectra, the electromagnetic properties, and some other important structure phenomena of nuclei. Because of the 

quite importance of the 2/9001 gfـpـ space for variety of problems in nuclear structure, this space is a region where the 

shell model can play an indispensable role and is at the frontier of our computational abilities.  
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In the 2/9001 gfـpـ  space one finds the interplay of collective and single-particle properties. This region is also of 

special interest from the viewpoint of astrophysics, such as supernovae explosions[5]. 

The aim of the present work is to study the first exited states and the reduced transition probabilities );( gsi JJMB   

in the A= 78 chain of isobars, which are BrSe 78

35

78

34 , and Kr78

36  nuclei by employing BCS theory and the MSDI as a 

residual interaction between two quasiparticles, in the pure configurations and the state of configuration mixing for all 

allowed states on the full valence space 2/9001 gfـpـ using the shell model code AUSM(Aleppo University Shell 

Model) which invited by us. 

2. THE NUCLEAR SHELL MODEL 

The nuclear shell model, introduced almost 50 years ago by Mayer Haxel, Jensen, and Suess, has been very successful in 

describing the properties of nuclei with few valence nucleons[6]. These properties include the energy levels, magnetic and 

quadruple moments, electromagnetic transition probabilities, beta decay, and cross section for various reactions.  

The basic assumption of the nuclear shell model is that, to a first approximation each nucleon moves independently in a 

potential that represents the average interaction with the other nucleons in a nucleus. The complete Schrodinger equation 

for A  nucleons reads as 

)1(),...,2,1(),...,2,1(ˆ AEAH      

where ),...,2,1( A  is a totally antisymmetric wave function and Ĥ contains single nucleon kinetic energies and two-

body interactions as 
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)0( )(ˆˆ  denoted a sum of single-particle Hamiltonians and VH ˆˆ )1(  is called a residual interaction. 

2.1. Shell Model with Pure Configurations: 

In the naive shell model we neglect the residual interactionV̂ , However, since we are dealing with the fermions of two 

sorts, protons and neutrons, the correct shell model wave function should be antisymmetric under permutation of any two 

nucleons with respect to its space, spin and isospin coordinates and it should possess definite values of the total angular 

momentum with parity and the total isospin
 ),( TJ  . So, we can construct the final shell model wave functions as 

certain linear combinations of functions totally antisymmetric. We will denote them as ),...,,( 321 Arrrr


 , This 

antisymmetrized wave function is called the Slater determinant of the given single-particle states, which reads as 
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Here  is an antisymmetrization operator that performs the sign accompanied permutations of the single-particle orbitals 

in the product wave function and also carries a normalization factor. The wave function of a nuclear state was taken to be 

a Slater determinant corresponding to a definite way of placing the nucleons in the mean field single-particle orbitals 

which called "pure configuration". In this model, The single-particle wave functions from Slater determinant are solutions 

of the corresponding Schrodinger equations is given as[7] 

)4()()(ˆ
ii rrh


    
     

 

Here  labels the single-particle state ttmjmsn  and  is single-particle energy. 

The Schrodinger equation for pure configurations reads as 
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The total energy is thus given as 

)6()(
1
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Such a model is useful to get simple single-particle estimations of different physical observables, assuming that the 

properties are determined only by the last nucleon. 

2.2. Shell Model with Configuration Mixing: 

In the realistic shell model, we have to take into account
)1(Ĥ , this part of the nuclear hamiltonian that was omitted in the 

mean-field description. Nucleon configurations are mixed by this residual interaction. Interactions between nucleons 

make them jump from one orbital to another with conserve
 ),( TJ  , so that the wave function contains several 

configurations. So, we should solve the eigenvalues problem 

)7(ˆ
  EH

  
 

Configuration mixing leads to the wave functions to consist of more than just one Slater determinant. So, we are looking 

for the wave function of the system in the form 

)8(
1

k

g

k
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where g  the number of pure configurations
 

considered and it is related to the valance space used, and 
ka is 

amplitude(weight) the wave function k . Usually, the valance space incorporates all possible configurations of valence 

protons and valence neutrons in the partially filled orbitals, while the rest is considered as an inert core(usually, we take a 

double magic numbers). So we treat only the valance nucleons. This theory efficient for few numbers of valance 

nucleons(smaller than five valance nucleons)[8]. It is clear that the valance space becomes quickly huge for numerical 

treatment as the number of valance nucleons increases.  

3.   BCS THEORY 

The BCS theory was first introduced by Bardeen, Cooper and Schrieffer in 1957 for microscopic description of the 

superconductivity of metals. There is experimental evidence for the presence of a similar collective condensate in atomic 

nuclei[6]. The valence nucleons of a nucleus feel a strong attractive force which stems from the short-range component of 

the nucleon–nucleon interaction. This short-range attraction was mimicked by the pure pairing force which given as[9]  

)9(ˆˆ
2

1
0;0; )( GjjjjVjj 

  

 G  is the strength of interaction, 
)(  

 The phase factor is chosen according to 
 

 )1()( Condon–Shortley phase 

convention or
 

1)( 
  Biedenharn – Rose phase convention.  

Having recognized the pairing phenomenon in nuclei, Bohr, Mottelson, Pines and Belyaev in 1958–59 proposed to apply 

BCS theory to nuclei[9]. The theory has become a standard part of the description of nuclear structure. The excited states 

of an even–even nucleus are created by breaking one or more pairs in the superfluid ground state BCS . The broken pair 

is interpreted as two quasiparticles, referred to as a two-quasiparticle configuration or a two-quasiparticle excitation. The 

energy is needed to break just one pair is called quasiparticle energy, then an extra energy equal to the binding energy of 

the pair has to be supplied from the outside. Thus we write BCS ground state as the vacuum for BCS quasiparticles as[9] 
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 CORE is the inert core, 
   ccA  the operator creates a pair of like nucleons.    

 


c  and 


c particle operators. The quasiparticle operators are linear combinations of particle operators via the 

Bogoliubov- Valatin transformation which is               
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a is the operator that creates a quasiparticle in orbital , and the corresponding annihilation operator is a . In the 

normal BCS case each operator


a creates a quasiparticle that is a particle with probability amplitude au  and a hole with 

probability amplitude a . This is understood so that the single-particle orbital is empty with a probability
2

au and 

occupied with a probability
2

av . Therefore a is called the occupation amplitude and au  the un occupation amplitude of 

the orbital , generically both are called occupation amplitudes. The amplitudes au  and a  are chosen to be real, so the 

normalization condition is 

)12(122  aau   
   

 

The equations gives the parameters of BCS vacuum are[9] 
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The phase factor
)( a  is chosen according to aa 

)1(
)(

 Condon–Shortley phase convention or
 1

)(
a Biedenharn – 

Rose phase convention. aE is a quasiparticle energy, which is the least energy we needed to break a pair of nucleons, a

is pairing gap, while the quantity is aaE  and a is constant can by written in the form
  

  
)14(  aa  

The quantity   is called the chemical potential, it tells how much the energy of the BCS ground state grows when one 

particle is added to it. The quantity a is called the self-energy, It describes the fact that the energy of a nucleon in orbital 

a  gets additional contributions from its interactions with the other nucleons, may be written in the form 

 
      

)15(;|;)]([ˆˆ 2222 JbaVJbaJJj ab

Jb
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Where )(Jab  is normalization factor. These equations crystallize the information contained in the BCS framework. 

They must be solved numerically, which requires iterative methods.  

4.   MIXING OF TWO-QUASIPARTICLE CONFIGURATIONS 

When we take into account
)1(Ĥ between two quasiparticle, it make them jump from one orbital to another without change 

 , just like nucleons. So that, the total wave function contains several configurations from wave functions

...BCS,BCS,BCS
321
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The total wave function for quasiparticle is thus given as  
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where MJn   is the full set of quantum numbers(principles quantum number and total angular momentum and its 

projection) and 

ba  is amplitude for the wave function Jba , . This is excitation is often called a phonon, the term 

refers to the collective properties. First we write the projection of the eigenvalue equation(7) onto the basis state BCS  

and then expand it by using(16) as                   
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Which we can write  
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This equation written as a matrix equation  
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are the elements of the matrix  is given as[9] 
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where JcdVJba res ;||; 11   is a particle–hole matrix elements, which it follows from the Pandya transformation[9] 
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For pure configurations, the equation(20) became as 
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Since the quasiparticle indices carry also the nucleon kind, the formalism for proton–neutron excitations can be obtained 

as a modification of the above, equation(20) is modified to reads as                                      

)23(;||;)(

;||;)()(

11

,

JnpVJnpuvuvvuvu

JnpVJnpvvvvuuuuEEA

resnpnpnpnp

npnpnpnpnnppnpnpnp









 
The Pandya transformation (21) is 
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For the pure configurations in proton- neutron formalism. Hence, the equation(23) became as  
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So, we have converted the Schrodinger equation for quasiparticle into an eigenvalues problem of the hamiltonian matrix. 

The eigenvalues and eigen states of a general hamiltonian are obtained by diagonalizing this hamiltonian matrix.  

5.   THE MODIFIED SURFACE DELTA INTERACTION (MSDI) 

Residual nucleon-nucleon interaction is the part of the interaction which is not include in the central average potential. In 

consequence of the Pauli principle prohibit most inelastic collisions in the nuclear matter, Therefore nucleons move freely 

in the nucleus and the effective interactions between the nucleons occurs mainly in the nuclear surface. The simplest form 

of residual interaction which agree with this description is the Surface Delta Interactions(SDI)[2]. Which considered 

separable interaction, this property greatly simplifies the calculation of two-body matrix element. This form was proposed 

in 1966 by Moszkowski and co-workers[8], and developed by Glaudemans who added the isospin dependence in the 

matrix element of the two body interaction, and it called the MSDI, the interaction may be written in the form[10]                                                    

)26(ˆˆ)ˆˆ()ˆˆ()(4]MSDI[ baTbaabTab ttBRrRrAV    

Where TA and TB are the strength of interaction, the values of this terms determine by means of "Least-Square Fitting", 

ab  is the angular distance between the interacting particles, ar̂ , br̂  are the position vectors of interacting particles, R̂  

is the nuclear radius and t̂  is isospin operator. The two-body matrix elements of the MSDI are given as[10]                                    
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 Correspondingly, J and T  are 

the spin and isospin of the two-particle system. In the case of pure configurations, the last expression became as  
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6.   ELECTROMAGNETIC TRANSITIONS 

The transition probability represent a sensitive test for the most modern effective interactions that have been developed to 

describe 2/9001 gfـpـ shell nuclei.  

Consider the transition probability per unit time, usually called just transition probability of gamma decay from an initial 

nuclear state i  to a final nuclear state f  denoted f iT  and its half-life is              

)29(
2ln

2/1

fiT
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The transition probability calculated by the ‘golden rule’ of time-dependent perturbation theory, as[11] 
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 Where 
2

h
  and h  is blank constant,

 
c is speed of light of vacuum and 0  is the electric capacity of vacuum. E

 

is the energy of the transition, M̂
 
is the nuclear operator associated with the multiple radiation field  ,   is the full 

set of quantum numbers which we need to define the states, The sources of the field are either of electric or magnetic type, 

designated by an index   such that E  or   so
  QM E

ˆˆ   or  
ˆM̂ . Where we have the reduced 

transition probability is[11] 
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is a reduced matrix elements. We can write the equation(30) for electric and magnetic transition as 
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  here is the hyper fine constant 

and N is the nuclear magneton. 

We can write the reduced single-particle matrix element for electric transitions as[9]
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e  is the nucleon charge, the phase factor
)(  E

ab is chosen according to 1)(  E

ab  
Condon–Shortley phase convention or
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 Biedenharn –Rose phase convention, 

)(

ab is define radial integrals for harmonic oscillator[9]. 

The single-particle matrix element for magnetic transitions is[9]                             
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 The phase factor 

)(  

ab
 is 

chosen according to 1)( ab
Condon–Shortley phase convention or
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 Biedenharn – Rose phase 

convention, and g is the gyromagnetic ratios.  

First we begin with the electromagnetic transition of excited states for an even–even nucleus to its BCS ground state. 

These excited states are proton - proton and neutron–neutron two-quasiparticle states, which given by using the 

amplitude[11] 
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Where (+) for E , (-) for  . The phase factor bl  is defined in(13).           

For an odd–odd nucleus the initial and final states are written as proton-neutron two-quasiparticle states. The transition 

amplitude for these states can be written in the final form as[9] 
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7.  CONFIGURATION MIXING FOR ELECTROMAGNETIC TRANSITIONS 

The wave function of BCS excited state is a linear combination of two quasiparticle components which given by equation 

(16). So, the initial and final BCS wave functions is                                                  
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The decay amplitude between these states is 
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The two quasiparticle matrix element- which appear on the right hand side- it takes the matrix element for electromagnetic 

transitions. 

8.   CALCULATIONS AND DISCUSSIONS 

In this work, the single-particle states are chosen for both protons and neutrons in eV as[9]
  

8.80, 6.82,8.40,4.80,0
2/92/12/52/32/7 01010  gpfpf      

We take Ca40

20
 as an inert core for three nuclei which are BrSe 78

35

78

34 , and Kr78

36 , and we restrict ourselves in the full space 

2/9001 gfـpـ  including five single-particle orbits which are
 2/12/52/32/7 1,0,1,0 pfpf  and 2/90g  to compute first 

excited states, and to compute )( MB values and half-lives for electromagnetic transitions. We use the shell model code 

AUSM[7]to calculate all these values.    

8.1. Excited states: 

For
 

Se78

34  nucleus, the best value for the MSDI strengths given as 

)eV(5.0,)eV(53.0  TT BA [12] which can be determined by a least-squares fitting procedure. For Br78

35  the best 

values for the MSDI strengths given as )eV(95.0,)eV(34.0  TT BA  and For
 

Kr78

36  the MSDI strengths given 

as )eV(42.0,)eV(5.0  TT BA [12]. Table 1, 2 and 3 represents the comparison between our theoretical 

calculations for the first excited states in eV for pure configuration and for configuration mixing using the residual 

effective interactions MSDI with the experimental data taken from Ref.[13,14] and the total wave functions for 

BrSe 78

35

78

34 , and Kr78

36  nuclei, respectively.  

Table 1. calculated values for first excited states in the pure configuration and in the configuration mixing compared with the 

experimental values for Se78

34  
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From table 1, we found the average absolute deviation between theoretical calculations and experimental data in the pure 

configuration is eV)(0.7647 

)()(
1

exp









N

iEiE

E

N

i

cal
PC  (here N is the number of excited states) for Se78

34 , this 

average became in the states of configuration mixing for all allowed states on the full space
 2/9001 gfـpـ is

 
eV)(0.5207  CME  for this nucleus. 

Table 2. calculated values for first excited states in the pure configuration and in the configuration mixing compared with the 

experimental values for Br78

35  

 

And we found from the table 2 the average absolute deviation between 

theoretical calculations and experimental data in the pure configuration for Br78

35 is eV)0.1746( PCE , this 

average became in the states of configuration mixing is eV)( 0.1031  CME . 

Table 3. calculated values for first excited states in the pure configuration and in the configuration mixing compared with the 

experimental values for Kr78

36  
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and we found from the table 3 the average absolute deviation between theoretical calculations and experimental data in 

the pure configuration is eV)0.7615(  PCE for Kr78

36 , this average became in the states of configuration mixing is

eV)0.6667(  CME . 

So, taking configuration mixing into consideration enhanced considerably the results for first excited states more than the 

case of pure configuration when comparison with the experimental data. 

8.2. Electromagnetic Transitions and )( MB Values: 

Table 4,5 and 6 represents the comparison between our theoretical calculations for the transition amplitude, reduced 

transition probability, transition probability and half-lives for pure configuration and for  

configuration mixing with the data taken from Ref.[13,14]. 

Table 4. calculated values of transition amplitude, reduced transition probability, transition probability and half-live in the 

pure configuration and in the configuration mixing compared with the experimental value for Se78

34  

From the table 4 we found the absolute deviation between theoretical calculations and experimental data for half-live in 

the state of pure configuration is (ps)8.571|| .exp

2/12/12/1  ttt PCPC
for

 
Se78

34 , this deviation in the states of configuration 

mixing became for all allowed states on the full space 
2/9001 gfـpـ is

 
0.458(ps)|| .exp

2/12/12/1  ttt CMCM .  

Table 5. calculated values of transition amplitude, reduced transition probability transition probability and half-live in the pure 

configuration and in the configuration mixing compared with the experimental value for Br78

35  
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5.7 0.3712 1.8671*109 0.6347 -1.7815 PC 

5.7777 9.1727*107 0.0312 0.3949 CM 

and from the table 5 we found the absolute deviation for half live in the state of pure configuration is

7.1288(ns)2/1  PCt for Cu60

29 , this deviation in the states of configuration mixing became for all allowed states on the 

full space
2/9001 gfـpـ is

 
0.0566(ns)|| .exp

2/12/12/1  ttt CMCM

  

Table 6. calculated values of transition amplitude, reduced transition probability and half-live in the pure configuration and in 

the configuration mixing for compared with the data for Kr78

36  

 

and from the table 6 we found the absolute deviation for half live in the state of pure configuration is .3(ps)3132/1  PCt for 

Kr78

36 , this deviation in the states of configuration mixing became for all allowed states on the full space 
2/9001 gfـpـ is

0.0266(ps)2/1  CMt . Also taking configuration mixing into consideration in electromagnetic transitions enhanced 

considerably the results more than the case of pure configuration when comparison with experimental data for this nuclei. 

And we can say the configuration mixing is powerful tool to calculate transition probability for studied nuclei more than 

pure configuration.  
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7.5 335 2.0661*10
9
 0.8461 2.0569 PC 

3.6734 1.8870*10
11

 77.277 -19.6567 CM 
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9.   CONCLUSIONS 

Shell model calculations and the BCS theory with effective interactions MSDI between two quasiparticles were 

performed using the AUSM code to reproduce first exited states and the reduced transition probabilities 

);( gsi JJMB   for A= 78, in the pure configurations and the configuration mixing for all allowed states on the full 

valence space
2/9001 gfـpـ . Good agreement was obtained by comparing this calculations in configuration mixing with 

the recently available experimental data. The MSDI can be used as a good instrument for reproducing these calculations 

in the valence space
2/9001 gfـpـ  .Also, when the valance nucleons is large. Obtain better agreement with experiment 

data, we can add the dimensions of the core excitation admixture, and taking into account more than two quasiparticle in 

configuration mixing. Also, it's possible to improve the calculation by increasing the size of the model space and 

performing a more careful analysis of the single particle energy and the interaction parameters. This work can be extended 

to study more chain of isotopes to have better understanding of nuclear structure and effective interactions and the 

possible ways to modify them to be more agreeable with theexperimental data. 
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